Gaussian Approximation Potential by Albert Bartok-partay, Hardcover, 9783642140662 | Buy online at The Nile
Departments
 Free Returns*

Gaussian Approximation Potential

An Interatomic Potential Derived from First Principles Quantum Mechanics

Author: Albert Bartok-partay   Series: Springer Theses

The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy.

Read more
Product Unavailable

PRODUCT INFORMATION

Summary

The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy.

Read more

Description

Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.

Read more

Critic Reviews

“From the reviews:This book is actually an account of the Ph.D. work of the author, and is aimed at practitioners of molecular simulation (physicists and materials scientists, mostly) who want to construct reliable empirical force fields parameterized by data obtained from equilibrium quantum mechanical computations. (Gabriel Stoltz, Mathematical Reviews, Issue 2011 j)”

From the reviews:

“This book is actually an account of the Ph.D. work of the author, and is aimed at practitioners of molecular simulation (physicists and materials scientists, mostly) who want to construct reliable empirical force fields parameterized by data obtained from equilibrium quantum mechanical computations.” (Gabriel Stoltz, Mathematical Reviews, Issue 2011 j)

Read more

Back Cover

Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.

Read more

More on this Book

Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.

Read more

Product Details

Publisher
Springer-verlag Berlin And Heidelberg Gmbh & Co. Kg | Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Published
4th August 2010
Pages
90
ISBN
9783642140662

Returns

This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.

Product Unavailable